
1、概述

LM2904 是由两个独立的高增益、内部频率补偿的运算放大器组成。适合于电源电压范围较宽的单电源工作,也适用于双电源工作,在推荐工作条件下电源的功耗电流与电源电压大小无关。应用范围包括传感放大器、音频放大器、工业控制、DC 增益部件和所有常规运算放大电路。

2、主要特点

- ▶ 单电源或双电源工作。
- ▶ 包含两个运算放大器。
- > 逻辑电路匹配。
- ▶ 功耗小。
- ▶ 内部频率补偿。
- ▶ 低输入失调电压和失调电流。
- ▶ 频率范围宽。
- ▶ 直流电压增益高。
- ▶ 电源电压范围宽: 单电源(3V~20V); 双电源 (±1.5V~±10V)
- ▶ 低功耗电流,适合于电池供电。
- ➤ 采用 DIP8 或 SOP8 封装形式。

3、管脚定义

SOP-8/DIP-8

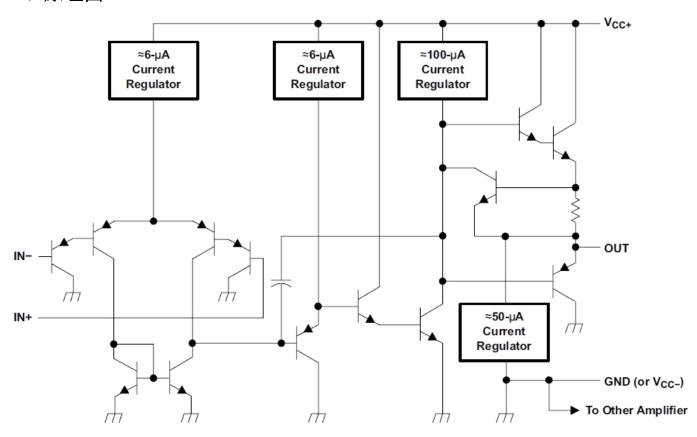
4、管脚说明

管脚	管脚名称	功能说明	管脚	管脚名称	功能说明
1	OUTA	A 运放的输出端	8	VCC	电源正极
2	INAN	A 运放的负输入	7	OUTB	B 运放的输出端
3	INAP	A 运放的正输入	6	INBN	B 运放的负输入
4	GND	电源负极	5	INBP	B 运放的正输入

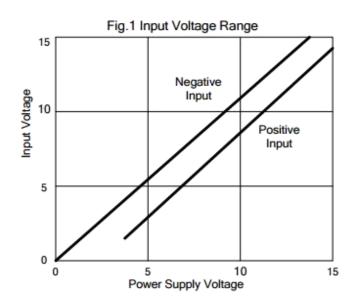
5、极限值

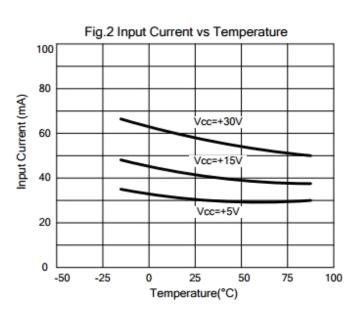
(绝对最大额定值,若无其它规定,Tamb=25℃)

参数名称	数值	单位
电源电压	24 或±12	V
差分输入电压	24	V
输入电压	-0.3∼24	V
输出端对地短路电流(1 放大器)(V≤15V、Ta=25℃)	持续	
输入电流(VIN<-0.3V)	50	mA
工作环境温度	0~70	$^{\circ}$ C
贮存温度	-65∼150	$^{\circ}$

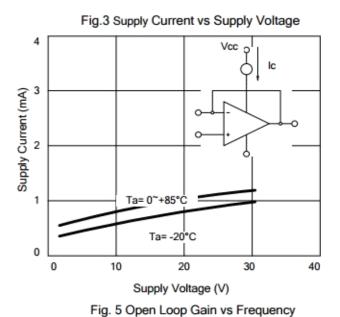

6、电特性

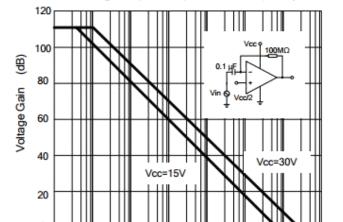
that help	符	제 작소니다.		规范值			单
特性	号	测试条件		最小	典型	最大	位
输入失调电压	.,	VCC=5VtoMAX, VIC= V_{ICRmin} , V_0 =1.4V, Ta=25°C			3	5	mV
	V _{IO}	VCC=5VtoMAX, VIC= V_{ICRmin} , VIC= $0\sim70$ °C	′o=1.4V,			7	mV
输入失调电压漂移	ΔV_{IO}				7		μV/°C
输入偏流	${f I}_{ m IB}$	Ta=25℃,IIN(+)或 IIN(-), VO	CM=0V		45	300	nA
输入失调电流	\mathbf{I}_{IO}	Ta=25℃, IIN(+)-IIN(-), VCM=0V			5	50	nA
输入共模电压范围	V_{ICR}	Ta=25℃,VCC=24V		0		VCC-1.5	V
电源电流	ICC	在整个温度范围上,RL=∞在所	VCC=24V		1	2	m۸
电极电视	icc	有运算放大器上	VCC=5V		0.5	1.2	mA
大信号电压增益	AVD	VCC=15V,Ta=25℃,R _L ≥2kΩ(对于 Vo=1~11V)			50	100	V/mV
共模抑制比	CMRR	DC,Ta=25°C,VCM=0~VCC-1.5	5V		65	90	dB
电源抑制比	PSRR	DC,Ta=25℃,VCC=5~24V			65	100	dB
放大器之间的耦合 系数		DC, Ta=25℃, VCM=0~2VC	C-1.5V		-120		dB
输出源电流	I _{Source}	VIN(+)=1V,VIN(-)=0V,VCC=15V,Vo=2V, Ta=25℃			20	40	mA
输出吸电流	I_{Sink}	VIN(-)=1V,VIN(+)=0V,VCC=15V, Vo=2V,Ta=25℃			10	20	mA
湘 古 敦 电 孤 	I_{Sink}	VIN(-)=1V,VIN(+)=0V,VCC=15V, Vo=200mV,Ta=25℃			12	50	mA
对地短路电流	Ios	VCC=15V,VO=0V,Ta=25℃			40	60	mA
松山古山亚		VCC=24V	RL=2KΩ				V
输出高电平	V _{OH}	VCC=24V	RL=10KΩ				V
输出低电平	V _{OL}	VCC=24V, R _L =10KΩ			5	20	mV


www.slkormicro.com



7、原理图



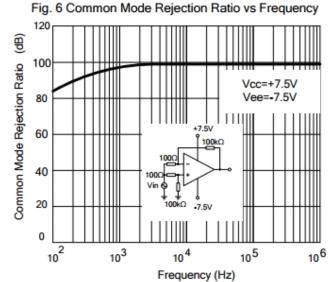

8、特性曲线

103

104

Frequency (Hz)

106

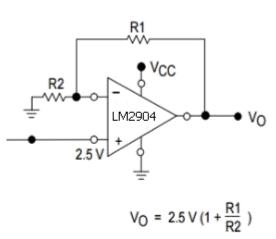

10⁷

10⁵

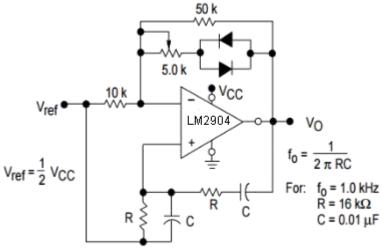
120
RL=20kΩ
RL=2kΩ

88 80
95
95
90
0
7.5 15 22.5 30

Fig. 4 Voltage Gain vs Supply Voltage

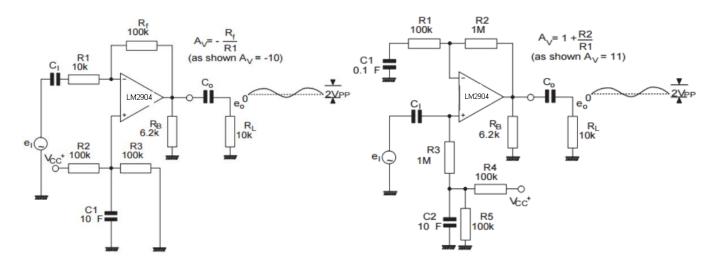

9、应用电路

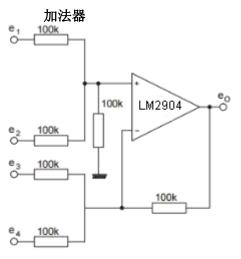
10¹


10⁰

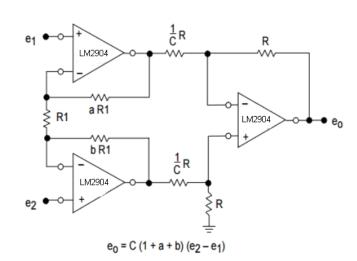
直流同相放大器

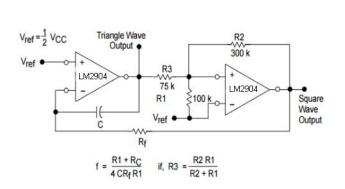
102

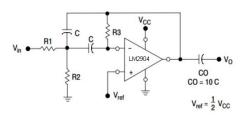

文氏振荡



交流耦合反相放大器


交流耦合同相放大器


 $e_0 = e_1 + e_2 - e_3 - e_4$ where $(e_1 + e_2) \ge (e_3 + e_4)$ to keep $e_0 \ge 0V$


高阻抗差模放大器

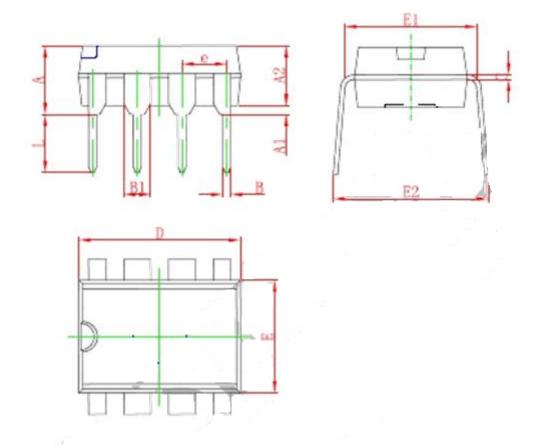
信号发生器

带通滤波器

Given: f_0 = center frequency $A(f_0)$ = gain at center frequency

Choose value
$$f_0$$
, C

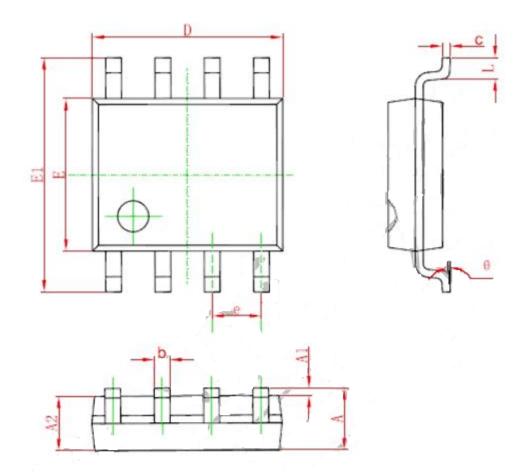
Then: R3 = $\frac{Q}{\pi f_0 C}$


$$R1 = \frac{R3}{2 \text{ A(f_0)}}$$

$$R2 = \frac{R1 \text{ R3}}{4Q^2 \text{R1} - \text{R3}}$$

10、封装尺寸

DIP8



B in	Exist s		EMIL s		
70 87	<u> </u>	M	Min	Max	
A	3.710	4.310	0.146	0.170	
A	0.510		0.020		
A2	3.200	3.600	0.126	0.142	
В	0.380	0.570	0.015	0.022	
B1	1.524(BSC)		0.060 (BSC)		
C	0.204	0.360	0.008	0.014	
D	9.000	9.400	0.354	0.370	
E	6.200	6.600	0.244	0.260	
E1	7.320	7.920	0.288	0.312	
е	2.540 (BSC)		0.100 (BSC)	
L	3.000	3.600	0.118	0.142	
E2	8.400	9.000	0.331	0.354	

www.slkormicro.com

SOP8

B in	Eidhe s		EMB s		
3 21	M	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A	0.100	0.250	0.004	0.010	
<u>A</u>	0. 135	1.550	0.053	0.061	
b	0. 330	0.510	0.013	0.020	
С	0. 170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270 (BSC)		0.050	(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

www.slkormicro.com